进程vs线程

我们知道,主机上资源有限,一颗 CPU、一块磁盘、一张网卡,如何同时服务上百个请求呢?
多进程模式是最初的解决方案。内核把 CPU 的执行时间切分成许多时间片(timeslice),比如 1 秒钟可以切分为 100 个 10 毫秒的时间片,每个时间片再分发给不同的进程,通常,每个进程需要多个时间片才能完成一个请求。

这样,虽然微观上,比如说就这 10 毫秒时间 CPU 只能执行一个进程,但宏观上 1 秒钟执行了 100 个时间片,于是每个时间片所属进程中的请求也得到了执行,这就实现了请求的并发执行。不过,每个进程的内存空间都是独立的,这样用多进程实现并发就有两个缺点:一是内核的管理成本高,二是无法简单地通过内存同步数据,很不方便。

于是多线程模式就出现了。多线程模式通过共享内存地址空间,解决了这两个问题。然而,共享地址空间虽然可以方便地共享对象,但这也导致一个问题,那就是任何一个线程出错时,进程中的所有线程会跟着一起崩溃。这也是如 Nginx 等强调稳定性的服务坚持使用多进程模式的原因。事实上,无论基于多进程还是多线程,都难以实现高并发,这由两个原因所致。

首先,单个线程消耗的内存过多,比如,64 位的 Linux 为每个线程的栈分配了 8MB 的内存,还预分配了 64MB 的内存作为堆内存池。所以,我们没有足够的内存去开启几万个线程实现并发。其次,切换请求是内核通过切换线程实现的,什么时候会切换线程呢?不只时间片用尽,当调用阻塞方法时,内核为了让 CPU 充分工作,也会切换到其他线程执行。一次上下文切换的成本在几十纳秒到几微秒间,当线程繁忙且数量众多时,这些切换会消耗绝大部分的 CPU 运算能力。

协程如何实现高并发

协程与异步编程相似的地方在于,它们必须使用非阻塞的系统调用与内核交互,把切换请求的权力牢牢掌握在用户态的代码中。但不同的地方在于,协程把异步化中的两段函数,封装为一个阻塞的协程函数。这个函数执行时,会使调用它的协程无感知地放弃执行权,由协程框架切换到其他就绪的协程继续执行。当这个函数的结果满足后,协程框架再选择合适的时机,切换回它所在的协程继续执行。

那协程的切换是如何完成的呢?实际上,用户态的代码切换协程,与内核切换线程的原理是一样的。内核通过管理 CPU 的寄存器来切换线程,我们以最重要的栈寄存器和指令寄存器为例,看看协程切换时如何切换程序指令与内存。

每个线程有独立的栈,而栈既保留了变量的值,也保留了函数的调用关系、参数和返回值,CPU 中的栈寄存器 SP 指向了当前线程的栈,而指令寄存器 IP 保存着下一条要执行的指令地址。因此,从线程 1 切换到线程 2 时,首先要把 SP、IP 寄存器的值为线程 1 保存下来,再从内存中找出线程 2 上一次切换前保存好的寄存器值,写入 CPU 的寄存器,这样就完成了线程切换。

协程的切换与此相同,只是把内核的工作转移到协程框架实现而已。协程的切换与此相同,只是把内核的工作转移到协程框架实现而已,下图是协程切换前的状态:

从协程 1 切换到协程 2 后的状态如下图所示:

创建协程时,会从进程的堆中分配一段内存作为协程的栈。线程的栈有 8MB,而协程栈的大小通常只有几十 KB。而且,C 库内存池也不会为协程预分配内存,它感知不到协程的存在。这样,更低的内存占用空间为高并发提供了保证,毕竟十万并发请求,就意味着 10 万个协程。当然,栈缩小后,就尽量不要使用递归函数,也不能在栈中申请过多的内存,这是实现高并发必须付出的代价。由此可见,协程就是用户态的线程。

查看栈大小方法:
root@52coder:~/coroutine-master# ulimit -a | grep 'stack size'
stack size                  (kbytes, -s) 8192

然而,为了保证所有切换都在用户态进行,协程必须重新封装所有的阻塞系统调用,否则,一旦协程触发了线程切换,会导致这个线程进入休眠状态,进而其上的所有协程都得不到执行。
比如,普通的 sleep 函数会让当前线程休眠,由内核来唤醒线程,而协程化改造后,sleep 只会让当前协程休眠,由协程框架在指定时间后唤醒协程。再比如,线程间的互斥锁是使用信号量实现的,而信号量也会导致线程休眠,协程化改造互斥锁后,同样由框架来协调、同步各协程的执行。所以,协程的高性能,建立在切换必须由用户态代码完成之上,这要求协程生态是完整的,要尽量覆盖常见的组件。比如 MySQL 官方提供的客户端 SDK,它使用了阻塞 socket 做网络访问,会导致线程休眠,必须用非阻塞 socket 把 SDK 改造为协程函数后,才能在协程中使用。

小结

我们从高并发的应用场景入手,分析了协程出现的背景和实现原理,以及它的应用范围。你会发现,协程融合了多线程与异步化编程的优点,既保证了开发效率,也提升了运行效率。

有限的硬件资源下,多线程通过微观上时间片的切换,实现了同时服务上百个用户的能力。多线程的开发成本虽然低,但内存消耗大,切换次数过多,无法实现高并发。

异步编程方式通过非阻塞系统调用和多路复用,把原本属于内核的请求切换能力,放在用户态的代码中执行。这样,不仅减少了每个请求的内存消耗,也降低了切换请求的成本,最终实现了高并发。然而,异步编程违反了代码的内聚性,还需要业务代码关注并发细节,开发成本很高。

协程参考内核通过 CPU 寄存器切换线程的方法,在用户态代码中实现了协程的切换,既降低了切换请求的成本,也使得协程中的业务代码不用关注自己何时被挂起,何时被执行。相比异步编程中要维护一堆数据结构表示中间状态,协程直接用代码表示状态,大大提升了开发效率。

在协程中调用的所有 API,都需要做非阻塞的协程化改造。优秀的协程生态下,常用服务都有对应的协程 SDK,方便业务代码使用。开发高并发服务时,与 IO 多路复用结合的协程框架可以与这些 SDK 配合,自动挂起、切换协程,进一步提升开发效率。

协程并不是完全与线程无关,首先线程可以帮助协程充分使用多核 CPU 的计算力,其次,遇到无法协程化、会导致内核切换的阻塞函数,或者计算太密集从而长时间占用 CPU 的任务,还是要放在独立的线程中执行,以防止它影响所有协程的执行。

网上看到的一篇协程库源码解析,整理的非常详细。
C++学习记录:一个协程库的源码分析
参考资料:
8k